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Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

» Complementing

» Model Checking
> Testing

» Formal: w € L(y)
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Runtime Verification for LTL

Observing executions/runs

Idea
Specify correctness properties in LTL
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Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.
The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

¢ u= true|p |eVel|elUe|Xp |
false |—=p | oA@ | oR¢ | Xp |
-
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Truth Domains

Lattice

> A lattice is a partially ordered set (£, C) where for each x,y € L, there
exists

1. aunique greatest lower bound (glb), which is called the meet of x and y, and
is denoted with x My, and

2. aunique least upper bound (lub), which is called the join of x and y, and is
denoted with x LI y.

» A lattice is called finite iff £ is finite.

» Every finite lattice has a well-defined unique least element, called
bottom, denoted with L,

» and analogously a greatest element, called top, denoted with T.

Zhang et al. NFM'12 7/31
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Truth Domains (cont.)

Lattice (cont.)
> A lattice is distributive, iff x 1 (y U z) = (x My) U (x M z), and, dually,
xU(yMNz)=(xUy) N (xUz).
> In a de Morgan lattice, every element x has a unique dual element ¥,
such that ¥ = x and x C y implies y C x.

Definition (Truth domain)

We call £ a truth domain, if it is a finite de Morgan lattice.

Zhang et al. NFM'12 8/31
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LTL's semantics using truth domains

Definition (LTL semantics (common part))

Semantics of LTL formulae over a finite or infinite word w = agay . . . € SIS
Boolean constants Boolean combinations
[w |= true] o = T [wE=-ele = [wE=¢le
wifiselg = L wiEevidle = WkelgUi=dlg
wiEeAdle = WEelgnoi=dle

atomic propositions

T ifpca T ifp¢a
WEle = hem Wk -rle = e
L ifp & ag L ifp €ag
next X/weak next X TBD

until/release

T thereisak, 0 < k < [w] : [wF = ¥]e = Tand

[wlk=eUydle = foralllwith0§l<k:[wl =]l =T
TBD else
¢ R = —(-elU-vy)
Zhang et al. NFM'12
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Application area: Specify properties of finite word
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LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae overaword u = ag...a,_1 € X

next
Wlxg _ MR e
- otherwise
weak next
e Xelr = Wl iful £e

T otherwise

Zhang et al. NFM'12 11/31
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LTL on finite, but not completed words
Application area: Specify properties of finite but expanding word
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LTL on finite, but not completed words

Be Impartial!
> go for a final verdict (T or L) only if you really know
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LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL)

Semantics of FLTL formulae overaword u = ag...a4,_1 € 2

next
= Xelr = W =gl ifu' #e
L otherwise
weak next
[ulXplr = W' Eelr ifu' #e

T? otherwise

Zhang et al. NFM'12 14/31
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Anticipatory Semantics

Consider possible extensions of the non-completed word
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LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

> re-use existing semantics
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LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

> re-use existing semantics
3-valued semantics for LTL over finite words
T ifVoeX¥:uc kg
MEel=¢ 1L ifVoeX¥ uocl ¢

7 else
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Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Go for T or L
» Consider XXXfalse

Zhang et al.
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Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L

» Consider XXXfalse
€ E  XXXfalse

a E  XXfalse
ar = Xfalse
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Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Go for T or L
» Consider XXXfalse

[e = XXXfalse] =

Zhang et al.
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aaa

m
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XXXfalse
XXfalse
Xfalse
false

if Vo € % : e0 = XXXfalse
if Vo € ¥¥ : eo = XXXfalse

else

NFM'12
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Predictive Semantics

Consider the program to monitor
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LTL with Predictive Semantics

Basic idea

» finite words in RV:
prefixes of infinite, so-far unknown words of our program

A first predictive semantics for LTL over finite words
if Vo € X¥ withuo € P:uoc = ¢

T
ME@=< L ifVoeX¥withuo € P:uc ¢
7 else

NFM'12
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Too much . ..

Answers model checking question!
T ifVoeX?withoceP:eoc =g

eEel=¢ L
7  else

ifVo € X witho € P:eo @
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More reasonable ...

Use abstraction

» Use overabstraction of P

» with L(P) C L(P) C =
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More reasonable ...

Use abstraction
» Use overabstraction of P

» with L(P) C L(P) C =¥

A general predictive semantics
T

mEel=4q L
?  else

Zhang et al.
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if Vo € ¥ withuo € P : uo & ¢
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How to get P?
> here, use simple analysis of P
» find for P sequential executions of actions over ¢’s alphabet

» obtain finite set R of
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How to get P?
> here, use simple analysis of P

» find for P sequential executions of actions over ¢’s alphabet

» obtain finite set R of

Predictive semantics

T ifVoeRVYo € X% :uvo |= ¢

[wEX¢]=4 L ifVoeRYo €S uvo b o
7?7 else
NFM'12 23/31
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Really. ..
» find sequences av in P

» send av to monitor rather than only a
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Presentation outline

Implementation and Experimental Results
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Implementation

Instrumentation

> use of Aspect] (abc) to obtain events from program
» analysis of strong regions, CFG and PDG to find sequential executions

» use Transcut to inject predictive words
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Implementation

A typical usage scenario of our prototype tool

Program
with
Predictive
Runtime
Monitoring
Capability

specify
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Implementation

Property
G(creat e — G(updat e — = F(next)))

Strong Regions and PDG

1 Vector v = new Vector(col)

2 Iterator it = v.iterator( );
3 v.add(object );

4 for(each element in col){

5 process each element ;
6 )

T

it.next();

Zhang et al. NFM'12 28/31
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Experimental Results

Setup

» used Dacapo benchmarks

isp

Results
antlr eclipse fop hsqldb bloat lucene
class number 224 344 967 385 263 311
h -
g‘et od num-| o7 3978 6889 5859 3986 3013
er
predictable 0% (0/23) 7.92% 24.65% 28.23% 17.06% 25%
shadow ratio ? (53/391) (83/288) (45/124) (608/1495) (61/224)
predictable 0% (0/23) 3.33% 7.86% 11.83% 7.88% 7.3%
region ratio ? (22/360) (24/229) (14/93) (204/1091) (15/178)
Zhang et al. NFM'12
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That's it!

Thanks! - Questions?
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